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A FORCE FIELD MODEL FOR BORON ENOLATES 

J.M. Goodman, Ian Paterson and S.D. Kahn? 
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Cambridge CB2 lEW, England 

Summary : Empirical boron enolate parameters for incorporation in Allinger’s MM2 force field (via MacroModel) 
have been derived from ab initio studies of model enolborane systems. 

Boron enolates are useful reagents for achieving high levels of both relative and absolute stereccontrol in aldol 

condensations’. Chiral boron enolates, where a chiral auxiliary or other group is attached to the carbonyl carbon or 

chiral ligands are attached to the boron, have emerged as powerful tools for the asymmetric synthesis of p- 

hydroxycarbonyl compounds. However, the fundamental factors influencing enolization stereoselectivity and enolate n- 

face stereodifferentiation in these systems are still not well understood. While theoretical studies2 have provided some 

insights regarding simple syn/unti diastereoselectivity in the aldol step for prochiral enolates, more exploratory work is 

needed before reliable predictions of new reaction sequences can be made and the rational design of new chiral reagents 

attempted. Unfortunately, the size of typical enolate systems incorporating chiral groups precludes the use of non- 

empirical theoretical methods, and parameters for empirical force fields, e.g. Allinger’s MM23, are altogether lacking. 

With the goal of providing a useful model for investigating the structures and structural biases of enolate 

systems, reported herein (Table) are a preliminary set of empirical force field parameters (i.e. for MM2) for boron 

enolates, which have been derived from ab initio molecular orbital calculations4. Values for typical equilibrium bond 

lengths and angles in boron enolates were formulated from the structures illustrated in Figures 1 and 2, bond 

stretching and angle bending constants were calculated from the normal mode vibrational frequencies7, and Mulliken 

population analysis was used to obtain values for bond dipole moments. Values for the van der Waals radius and 

“hardness” of boron were not modified from those already employed in MM2. The stretch-bend cross term, as well as 

the improper torsion term, significant for description of 3- and 4-membered rings, has been set to zero for the purposes 

of these initial investigations. The torsional parameters V,, V,, and V,, were obtained from a least-squares fit to the 

truncated Fourier expansiong, 

E Torsion - - “z’(l-cos(0)) + 9 (l-cos(20)) + q (1-cos(30)) 

where the energies were obtained from partial geometry optimizations of structures (Figures 1 and 2) in which the 

torsion angle was systematically varied lo. Inspection of the resultant geometries and parameters for structures l-4 

reveals some interesting features of boron enolates. 

In contrast to previous calculations 2a,b,ll, forms in which the boron moiety is S-cis to the olefinic carbons 

(Fig. 2) are found as transition structures for rotation about the C-O o bond (i.e. each has a single imaginary normal 

mode); whereas forms having an orientation S-truns (Fig. 1) are generally found to be ground-state minima on the 

potential surface. Minima have also been located where the boron moiety is tilted out of the plane by cu 35” to the 

olefinic carbons, but these are of higher energy than the S-truns forms for enolates l-3. In the case of the acetone 
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enolate, 4, however, the S-trans form is distorted by the steric interference between the boron moiety and the Ct 

methyl group. This results in a non-planar minimum energy structure 1x,13, where the BH2 group is 37.0” to the olefinic 

carbons (0.82 kcal*mol-1 lower in energy than 4a). In the enolate of acetaldehyde, 1, the barrier to rotation is 0.73 

kcal*mol-l, whereas substitution at C2 with a E (2) or Z (3) methyl group increases the barrier to 1.06 and 5.38 

kcal*moP1, respectively. These barriers are reflected in a V3 term for C,zCSr,zOSnzB of 1.0 kcal*mol-t, with the large 

barrier for 3 resulting from the substantial geometric distortions of the enolate skeleton (see Fig. 2) imposed by the 

steric repulsion between the boron moiety and the allylic methyl group, rather than from any electronic consequences. 

The reduced barrier to rotation in the acetone enolate, 4, is a result of the destabilization of the &runs form, 4a. It is 

interesting that in both 3b and 4a, all distortions result from angular modifications, as opposed to bond length 

variation, and that this would have been anticipated upon examination of the “average” normal modes of the ground- 

state structures presented in the Table. 

Fig. 1: S-tram structures 
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Fig. 2: S-cis structures 
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The strong preference for planar enolate structures l3 in 1-3 results from the conjugative delocalization of 4 x 

electrons over the olefinic carbons, the enol oxygen, and the coordinatively unsaturated trivalent boron, and is in accord 

with the large V2 term (cf. ref. 9) obtained for boron enolates of 1.5 kcabmol-1. That this preference is largely 

independent of substitution on the olefrnl2, as well as alkyl substitution on boron 14, is reflected in the invarience of the 

C=C, CO, and OB bond lengths, all of which should be good indicators of electronic differences in enolates. The 

shortened OB bond length15 of 1.3728A and the >llO” COB bond angle are both indicative of donation of a lone pair 

on oxygen into the empty p-orbital on boronl6. 
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Table. MM2 parameters for model boron enolates derived from ab initio molecular orbital theory. 

Quantity 

Bond lengthb 

Bond angleC 

Dipole momentd 

Bond stretche 

Angle bendf 

Torsional barriers 

Atom types 

26-6 (B-G) 

26-5 (B-H) 

5-26-6 (H-B-O) 

26-6-2 (B-O-C) 

5-26-5 (H-B-H) 

26-6 (B-G) 

26-5 (B-H) 

26-6 (B-G) 

26-5 (B-H) 

5-26-6 (H-B-O) 

26-6-2 (B-O-C) 

5-26-5 (H-B-H) 

26-6-2-2 (B-0-C=C) 

26-6-2-l (B-O-C-C) 

5-26-6-2 (H-B-O-C) 

Frequencya Parameter 

r0 

1.3728 

1.1867 

00 

118.85 

130.11 

122.31 

lt 

0.72 

0.43 

KS 

1451 (1277) 6.2601 

2774 (2441) 3.2396 

KB 

1083 (953) 0.7290 

273 (240) 0.3733 

1367 (1203) 1.1572 

Vl v2 v3 

0.0 1.5 1.0 

-1.15 0.77 0.58 

0.0 10.0 0.0 

(a) cm-r, calculated (corrected); (b) Angstroms; (c) Degrees; (d) Debye; (e) mdyn*A-1; (f) mdymrad-2; (g) 

kcal*mol-1. 

Finally, inclusion of the above parameter set in the MM2 force field implemented in Stills MacroModel program 

successfully allows boron enolates to be modeled While the present data will permit the effects of chiral substitution on 

the carbon skeleton to be explored, chiral groups on boron require further parameters to be developed. An expanded 

parameter set which includes alkyl and alkoxy substituents on boron is being developedI4, and will be reported in due 

course. 
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Non-planar forms other than 4c were considered, but these normally relaxed without barrier to a planar form. The 
only exceptions involve forms such as 5a and Sb: 

H3 H3 

which are generally characterized higher-order stationary points (>l imaginary normal mode), or transition 

structures of higher energy than those in Figure 2. A full study of boron enolates is underwayla. 
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